Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction

11 A new scheme based on multi-objective hierarchical genetic algorithm (MOHGA) is proposed to extract interpretable rule-based knowledge from data. The approach is derived from the use of multiple objective genetic 13 algorithm (MOGA), where the genes of the chromosome are arranged into control genes and parameter genes. These genes are in a hierarchical form so that the control genes can mani...

متن کامل

Feature Selection with Multi Objective Genetic Algorithm and Fuzzy Rule-Based Multiclassifiers for Cancer Classification

DNA microarray data now permit scientists to screen thousand of genes simultaneously and determine whether those genes are active or silent in normal and cancerous tissues. With the advancement of microarray technology, new analytical methods must be developed to find out whether microarray data have discriminative signatures of gene expression over normal or cancerous tissues. In this paper, w...

متن کامل

Entropy Based Fuzzy Rule Weighting for Hierarchical Intrusion Detection

Predicting different behaviors in computer networks is the subject of many data mining researches. Providing a balanced Intrusion Detection System (IDS) that directly addresses the trade-off between the ability to detect new attack types and providing low false detection rate is a fundamental challenge. Many of the proposed methods perform well in one of the two aspects, and concentrate on a su...

متن کامل

Clustering Based Multi-Objective Rule Mining using Genetic Algorithm

Multi-Objective Genetic Algorithm (MOGA) is a new approach for association rule mining in the market-basket type databases. Finding the frequent itemsets is the most resource-consuming phase in association rule mining, and always does some extra comparisons against the whole database. This paper proposes a new algorithm, Cluster-Based MultiObjective Genetic Algorithm (CBMOGA) which optimizes th...

متن کامل

Multi-objective Evolutionary Algorithm for Temporal Linguistic Rule Extraction

Autonomous temporal linguistic rule extraction is an application of growing interest for its relevance to both decision support systems and fuzzy controllers. In the presented work, rules are evaluated using three qualitative metrics based on their representation on the truth space diagram. Performance metrics are then treated as competing objectives and the multiple objective evolutionary algo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fuzzy Sets and Systems

سال: 2005

ISSN: 0165-0114

DOI: 10.1016/j.fss.2004.07.013